

Pathogenic Characteristics Of Pandemic Influenza Viruses

Ruben Donis, PhD

Influenza and Emerging Infectious Diseases Division, Biomedical Advanced Research and Development Authority (BARDA) Assistant Secretary for Preparedness and Response (ASPR) Department of Health and Human Services, USA

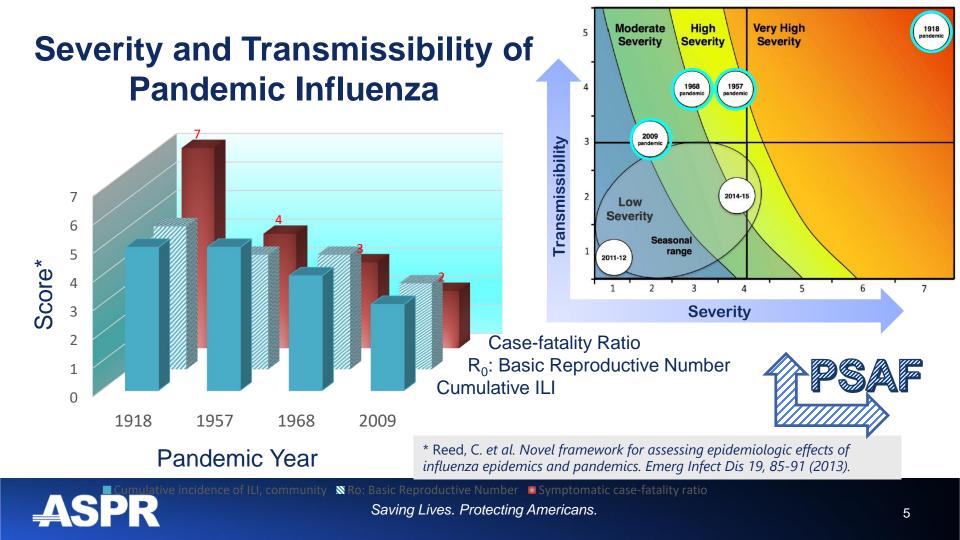
> 2018 WORLD INFLUENZA CONFERENCE Beijing Conference Center, September 8, 2018

ASPR's Mission

Save Lives and Protect Americans from 21st Century **Health Security** Threats

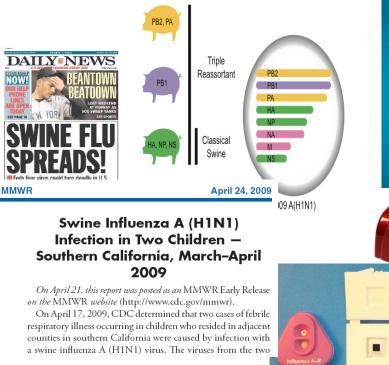
The BARDA Model

BARDA develops and makes available medical countermeasures (MCMs) by forming unique public-private partnerships with industry partners



BARDA Pandemic Influenza Preparedness

Early Detection \rightarrow Early Response \rightarrow Saving Lives


Lessons Learned From 2009 H1N1 Pandemic

ΓΙΜΕ

BIRD FLU

IRAT Informs Pre-pandemic Preparedness

Attributes of the virus

7

- Receptor Binding Properties
- Transmission in Animal Models
- Genomic Variation
- Antiviral Susceptibility

Attributes of the population

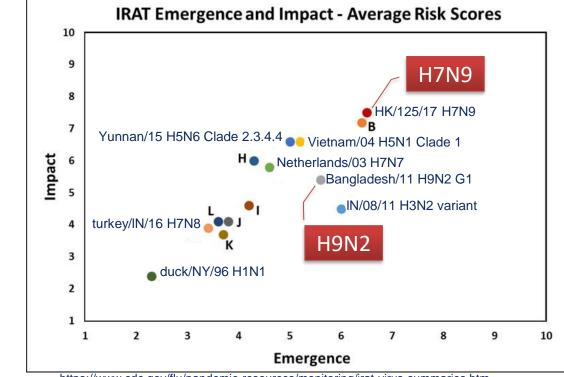
- Population Immunity
- Disease Severity

Critical Elements

Antigenic Similarity to Vaccines

Virologic

Surveillance

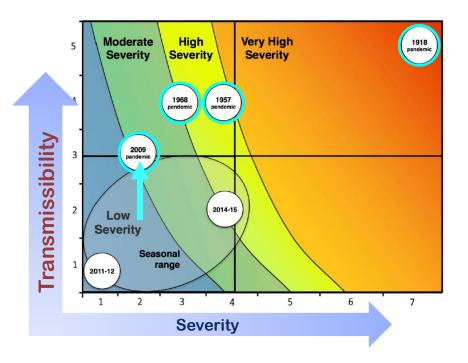

Ecology and epidemiology

- Human Infections
- Infections in Animals
- Global Distribution

Disease

Surveillance

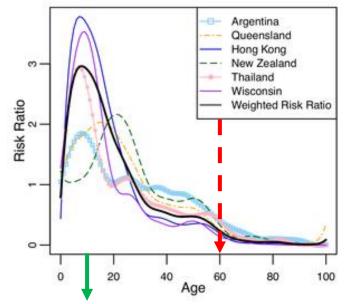
4SPR

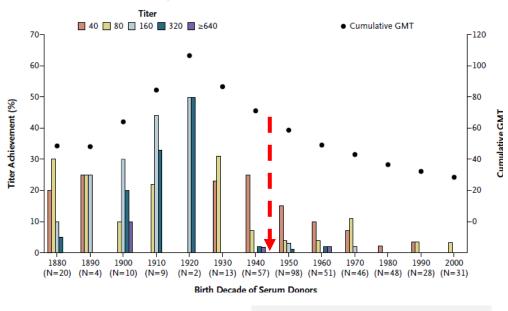


https://www.cdc.gov/flu/pandemic-resources/monitoring/irat-virus-summaries.htm

Severity and Transmissibility of 2009 H1N1 Pandemic

Low to moderately severity


- 2009 H1N1
 - "Recycled" HA from 1918
 - Eurasian avian M and NA
 - Classical and Eurasian swine genes
- Minimal adaptive changes were needed
 - Most genes were of human origin maintained in swine



2009 H1N1: Transmissibility and Population Immunity

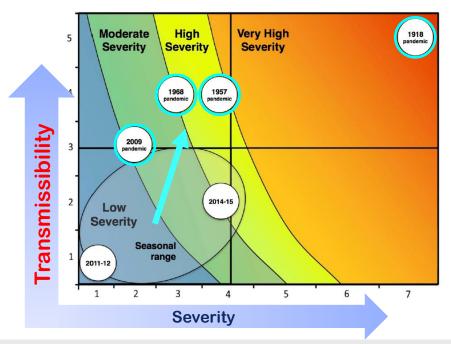
Laboratory-confirmed Influenza

Serum Antibody to A(H1N1)pdm09

Median age: 12-15 years

Hancok K et al. NEJM (2009) 361(20):1945-52

Jacobs JH, et al. (2012) PLOS ONE 7(8): e42328. CDC. MMWR 2009;58(33):913–918.


Severity & Transmissibility of '57 H2N2 and '68 H3N2

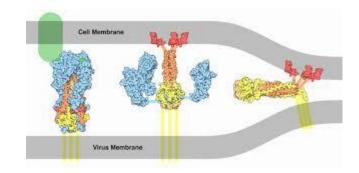
High severety

- 1957 H2N2 subtype
 - Novel H3 HA + N2 NA
 - Avian PB1

Moderate severety

- 1968 H3N2 subtype
 - Novel H3 HA
 - New avian PB1
 - Immunity to N2 dampened severity?

* Reed, C. et al. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg Infect Dis 19, 85-91 (2013).

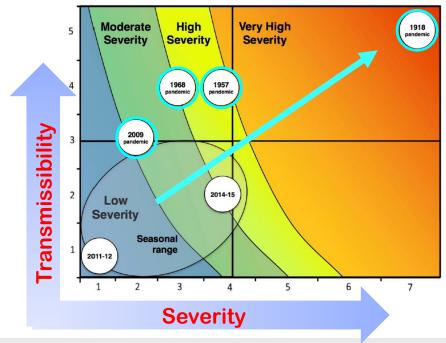

Animal-origin HA/NA Adaptation to Human Host

HA adaptation

- Recognize 2-6 sialic acidcontaining receptors in the human upper airway tract
- Optimal acidic pH trigger for fusion (stability)
- Appropriate susceptibility to specific proteases as activators of fusion function

NA adaptation

 Altered enzymatic activity for functional balance with HA

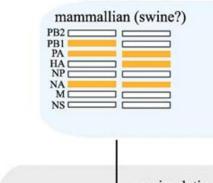


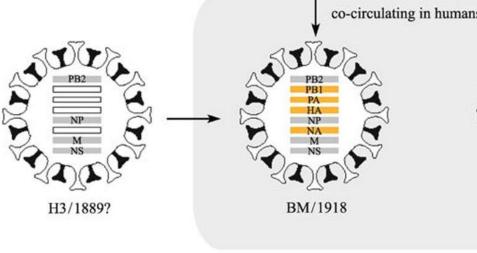
Severity and Transmissibility of 1918 H1N1

Very high severity

- Direct avian to human?
- Avian to swine to human?
- HA + NA + Internal genes
- Tumpey et al. H1N1
- Herfst et al. H5N1
- Imai et al. H5N1/H1N1

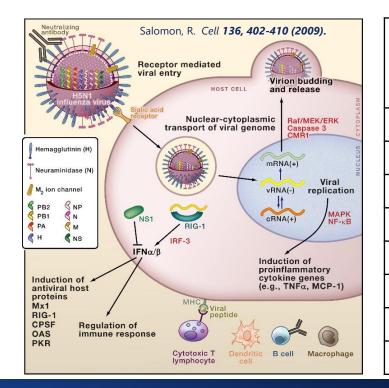
Tumpey, et al. (2005) Science 310; p77-80




* Reed, C. et al. Novel framework for assessing epidemiologic effects of influenza epidemics and pandemics. Emerg Infect Dis 19, 85-91 (2013).

The Reconstruction of 1918 H1N1

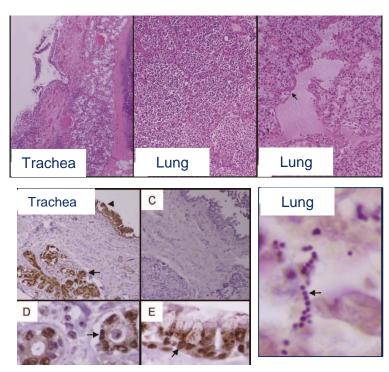
- 1918 H1N1 virus recued by RG
 - Landmark achievement
 - ✓ Tumpey et al 2005
 - ✓ Taubenberger et al. 2001
 - Experimental infections
 - In vitro and in vivo
 - Structural biology
 - Omics



Darisuren Anhlan et al. RNA 2011;17:64-73

Guan et al. Protein Cell. 2010 1(1):9-13.

1918 H1N1 Pathogenicity: Viral Replication & Transmission Machinery In Animal Models

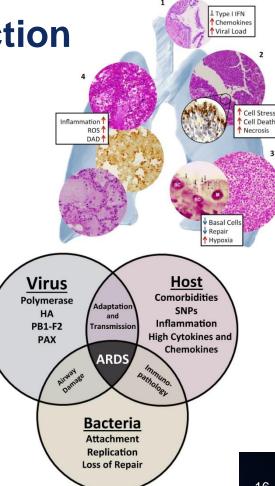


	Protease cleavage activation		
HA	Sialoside receptor binding specificity		
	Membrane fusion/pH optima		
NA	NA Glycan cleavage catalysis optima		
M2	M2 Ion channel activity, uncoating, folding		
NS2	NS2 Nucleocytoplasmic traffic		
PB1	Replicase and transcriptase, fidelity		
PB2	RNA Cap-binding		
PA	RNA Cap endonuclease		
NP & M	Genome structure and virion assembly		
NS1	Host response modulation		

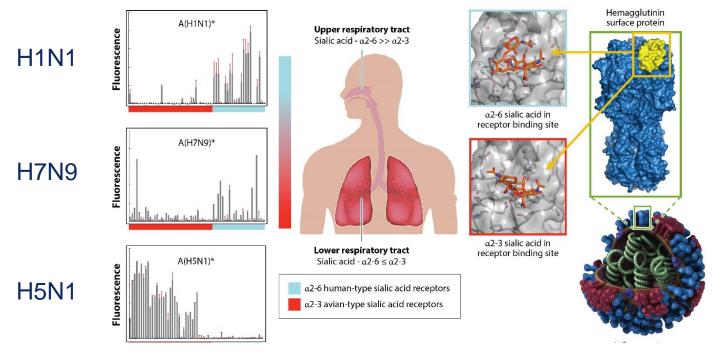
Pathology:1918 and Subsequent Pandemics

- 1918 pathologic findings are similar to those of autopsies from the 1957 and 2009 pandemics
- No unique pathological mechanisms
 - similar cell tropism
 - similar virus distribution
- Co-morbidities; obesity, cardio

Gill, J. R. et al. Pulmonary pathologic findings of fatal 2009 pandemic influenza A/H1N1 viral infections. Arch Pathol Lab Med **134**, **235-243 (2010)**.



1918 H1N1: Bacterial Superinfection


- Bacterial superinfections in fatal pandemic flu
 - ~90% in 1918
 - ~75% in 1957
 - ~55% in 2009
 - Streptococcus pneumoniae
 - Haemophilus influenza
 - Mycoplasma pneumonia
 - Staphylococcus aureus
- A future 1918-like pandemic would be much less severe due to antibiotic therapy
- The search for answers on 1918 virulence continues!

Kash, J. C. & Taubenberger, J. K. *Am J Pathol 185, 1528-1536,* Gill, J. R. *et al. Arch Pathol Lab Med 134, 235-243 (2010).*

H7N9 IRAT Pandemic Emergence Risk: 6.5

Jernigan, D. Ann Rev Med 66, 2015 pp 361-371

H9N2 Pandemic Emergence Risk: 5.6

		Virus	Emergence Score	Impact Score
		H7N9 [A/Hong Kong/125/2017]	6.5	7.5
	Γ	H9N2 G1 lineage [A/Bangladesh/0994/2011]	5.6	5.4
		H5N1 Clade 1 [A/Vietnam/1203/2004]	5.2	6.6

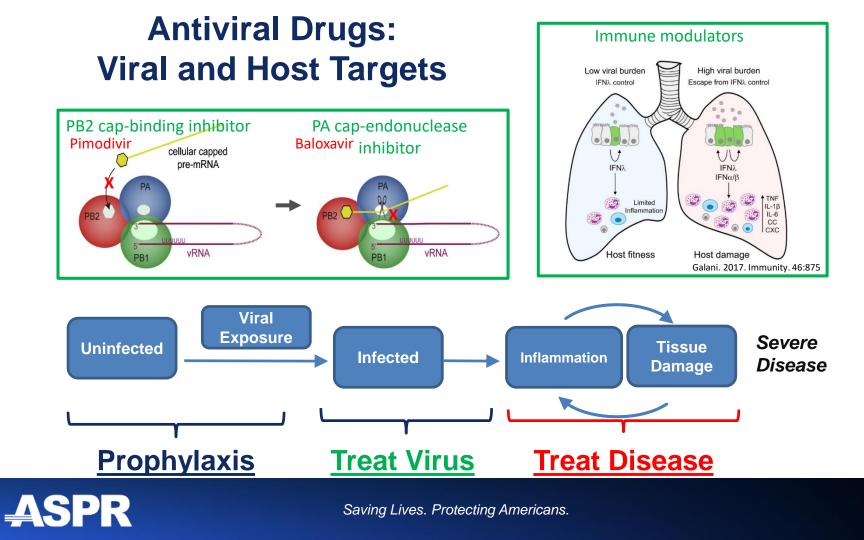
Similarities

- Human infections: sporadic
- Receptor: significant 2-6 binding
- Internal genes: shared ancestry
- Evolution: multiple reassortments and antigenic drift

Wu ZQ, Int. J. Environ. Res. Public Health 2017, 14, 263; Stephenson I., Lancet. 2003 Dec 13;362(9400):1959-66.

Differences

- Severity in humans: H7N9 CFR: ~30%
- Immunity in humans: H9N2 > H7N9
- Age distribution: H9N2 median =13 years, H7N9 median = 61 years
- Geographic distribution: H7N9 1 country, H9N2 widely in 2 continents
- H9N2 frequently detected in swine


Predictable Unpredictability of Pandemic Influenza

- Global Challenges
 - Unknown pathogenic characteristics of the next pandemic virus
 - Faster spread than ever
 - Greater potential for societal disruption

- Global Opportunities
 - Better global pandemic surveillance
 - Faster communications, international collaboration
 - Improved pandemic response capabilities
 - Better and faster diagnostics, masks, vaccines and drugs

Thank You!

