Influenza vaccine
effectiveness in preventing
out-patient visits,
hospitalization and death in
various population groups.

Arnold S. Monto, MD
Thomas Francis Professor
University of Michigan
School of Public Health
Ann Arbor, Michigan
USA

Protective Efficacy of Inactivated Influenza Vaccines 1943-1969

Issues in determining effectiveness of influenza vaccine

- Gold standard is a placebo controlled trial. However, this only applies to the year(s) the trial was conducted and the population that participated.
- Vaccine effectiveness (VE) varies by age group and other factors, such as past vaccination and underlying conditions.
- In some years, the virus circulating may not be similar to the one in the vaccine, resulting in lower VE.
- Observational studies are conducted to determine actual VE in real people.

Test-Negative Design

- Most commonly used observational design for estimating VE
- Study populations are generally drawn from patients seeking outpatient care for ARI or hospitalized for respiratory conditions
- RT-PCR confirmed outcomes
 - Cases: subjects testing positive for influenza
 - Controls: subjects testing negative for influenza
- Estimated ratios of the odds of influenza in vaccinated and unvaccinated subjects are used to calculate VE, adjusted to control for confounding factors.

US Flu VE Network: Five Study Sites and Principal Investigators

Priority groups for seasonal influenza

vaccinatio

Highest priority

Pregnant women

Children aged 6-59 months

Individuals with specific chronic medical conditions

Elderly

Health-care workers

Source: WHO, www.who.irm, icos from www.thenounproject.com

Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies

Edward A Belongia, Melissa D Simpson, Jennifer P King, Maria E Sundaram, Nicholas S Kelley, Michael T Osterholm, Huong Q McLean

- 56 test-negative studies2007 to 2014/15
- Lower pooled VE against H3N2 than H1N1pdm09 and B
- Pooled VE similar by age groups; decreasing trend for H3N2

Lancet Infect Dis 2016

Young children

Effectiveness of influenza vaccination against medically attended influenza in children, US Flu VE Network, 2011-2019

Effectiveness of influenza vaccination on influenza-associated hospitalisations over time among children in Hong Kong: a test-negative case-control study

Shuo Feng*, Susan S Chiu*, Eunice L Y Chan, Mike Y W Kwan, Joshua S C Wong, Chi-Wai Leung, Yiu Chung Lau, Sheena G Sullivan, J S Malik Peiris,

Benjamin J Cowling

- Aged 6 months 17 years
- 5 seasons, 2012-17
- Most vaccination by Dec
- Pooled VE declined with time since vaccination

Older adults

Influenza vaccine effectiveness against any influenza among US adults aged ≥65 years, Flu VE Network, 2011-2019

Ambulatory studies: Effectiveness of influenza vaccination against medically attended influenza in older adults, 2015-2019

2015-16

Vilcu, 2018 Zhang, 2018 Kwong, 2019

2016-17

Regan, 2019 Shoubaki, 2018 Kissing, 2017* Wu, 2018

2017-18

Rondy, 2018* Coleman, 2018 Chan, 2018 Sullivan, 2017

2018-19

Skowronski, 2019* Kissing, 2019*

Hospital studies: Effectiveness of influenza vaccination against hospitalized influenza in older adults, 2015-2019

2015-16

Chon, 2019 Pebody, 2016 Mohl, 2018 Zhang, 2018

2016-17

Regan, 2019 Shoubaki, 2018 Kissing, 2017* Wu, 2018

2017-18

Rondy, 2018* Coleman, 2018 Chan, 2018 Sullivan, 2017

2018-19

Skowronski, 2019* Kissing, 2019*

Study Hospital Sites

- University of Michigan Hospital
 - 550-bed adult tertiary care hospital
 - Ann Arbor, MI

- Henry Ford Hospital
 - 802 bed adult tertiary care hospital
 - Detroit, MI

Summary of A (H3N2) Virus Genetic

Characterization

- Genetic group determined by pyrosequencing or Sanger sequencing
- The A (H3N2) virus included in the 2014-2015 influenza vaccine belongs to group 3C.3
- The 3C.2a genetic group was associated with antigenic drift from the vaccine virus.

Influenza Vaccine Effectiveness against Influenza Associated Hospitalization

Analysis Subset	Vaccinated N Flu/Total (%)	Unvaccinated N Flu/Total (%)	Unadjusted VE % (95% CI)	Adjusted VE % (95% CI)
All Influenza	66/430 (15)	50/212 (24)	41 (11 to 61)	47 (13 to 68)
Age 18-49 yrs	11/81 (14)	23/91 (25)	54 (-3 to 79)	59 (-3 to 84)
Age 50-64 yrs	22/169 (13)	13/73 (18)	31 (-46 to 67)	24 (-81 to 68)
Age ≥65 yrs	33/180 (18)	14/48 (29)	45 (-13 to 74)	55 (-14 to 83)
A (H3N2)	57/421 (14)	41/203 (20)	38 (4 to 60)	46 (7 to 68)
B Yamagata	3/152 (2)	6/74 (8)	77 (6 to 94)	82 (-3 to 97)

Models were adjusted for age in months (cubic spline), calendar time (categorical biweekly), sex, enrollment hospital (UM; HF), time from onset to specimen collection (days), frailty score (0-5), and Charlson score (categorical: 0, 1, 2, 3+).

Clin Infect Dis. 2016; 63:1017-25

Ambulatory

Hospital

Influenza vaccine effectiveness by test-negative design – Comparison of inpatient and outpatient settings

- Shuo Fenga, Benjamin J. Cowlinga, Sheena G. Sullivan b, C
 - 25 paired VE estimates from 14 hospital and ambulatory studies, 2010-2014
 - Hosp. patients more likely to have high-risk conditions, vaccination
- Influenza positivity higher among ambulatory patients
- Compared differences in VE: VaccAV£€ if hospital VE<ambulatory

Comparison of influenza VE against any influenza A or B in inpatient vs outpatient setting, adults ≥18 years, USA

Persons with chronic medical conditions

Influenza vaccine effectiveness against hospitalized influenza A(H1N1)pdm09, persons aged ≥65 years, by risk groups, Europe, 2015-16

Source: Rondy, Eurosurveillance 2017

Clade-specific VE

Increasing use of Next Generation Sequencing to estimate VE against emerging influenza viruses

- US Flu VE network: platform for annual estimates of VE against medically attended influenza in the ambulatory setting
- Flu VE data presented to WHO Strain Selection Committee
 - VE against A/H3N2 clade 3C.3a (vaccine mismatch) in 2018-19
 - VE against emerging A/H1N1pdm09 subclade in 2019-20

Emergence of 3C.3a A/H3N2 viruses in the U.S., 2018–19

Adjusted vaccine effectiveness against influenza A/H3N2 by clade, US Flu VE Network, 2018–19 (seq. data as of 6/21/19)

				Vaccine Effectiveness				
	Influenza positive		Influenza negative		Unadjusted		Adjusted*	
	N vaccinated /Total	(%)	N vaccinated /Total	(%)	VE %	95% CI	VE %	95% CI
All Influenza A/H3N2 All H3N2	710/1352	53	4065/7249	56	13	(3 to 23)	9	(-4 to 20)
A(H3N2) clade 3C.3a	372/709	52	4065/7249	56	14	(-1 to 26)	11	(-6 to 26)
A(H3N2) clade 3C.2a1	30/61	49	4065/7249	56	24	(-25 to 54)	45	(5 to 68)

^{*} Multivariable logistic regression models adjusted for site, sex, race/ethnicity, self-rated general health status, interval from onset to enrollment, and calendar time.

Summary

- Observational studies are a real-world way of gaining evidence for influenza vaccine effectiveness in populations targeted for vaccination
- Effectiveness will vary by type and subtype, so overall effectiveness will change from year to year
- Estimates of vaccine effectiveness from ambulatory and hospital studies in often similar but may vary in favor of hospitalizations in some years.
- There is evidence of prevention of death in the older population, but the studies need to be much larger and are not laboratory confirmed.
- These studies have been repeated in different situations, validating the positive conclusions.

