Challenges in the Clinical Management of Influenza

Tim Uyeki MD, MPH, MPP
Influenza Division
Centers for Disease Control and Prevention

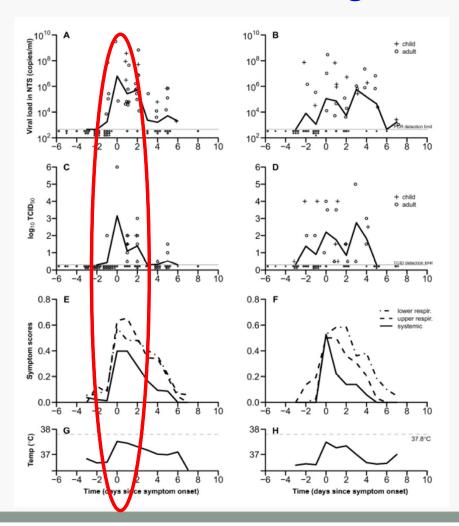
Disclosures

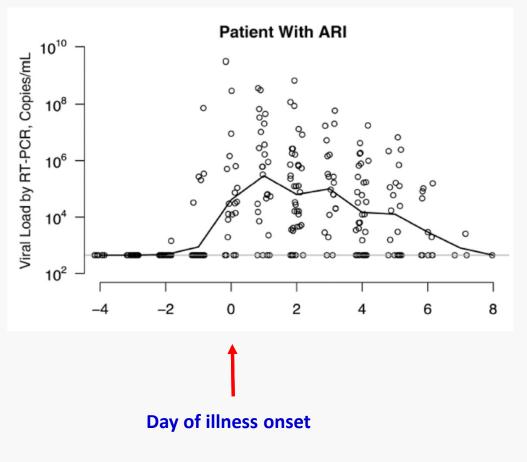
• No conflicts to report

Applying What is Known to Have Clinical Benefit

- Challenge 1: Early Diagnosis
- Challenge 2: Starting Antiviral Treatment Early
- Challenge 3: Improving Management of Hospitalized Patients
- Developing new interventions for clinical management of influenza
 - Challenge 4: Conducting Clinical Trials of Interventions to Improve Clinical Management

- RCTs have shown that antiviral treatment versus placebo has significant clinical benefit when started within 48 hours after onset
 - Antiviral treatment has the greatest clinical benefit when started as close to illness as possible
 - Baloxavir (adolescents and adults)
 - Patients treated ≤24 hours after illness onset had a significantly faster time to alleviation of symptoms than patients treated >24-48 hours after illness onset (median difference in time to alleviation of symptoms vs. placebo: 32.8 hours compared with 13.2 hours (p<0.001)
 - Oseltamivir Pooled meta-analysis of 5 RCTs in children
 - Patients treated <24 hours after illness onset had significantly greater reduction in duration of illness than starting treatment 24-48 hours after onset (-22.8 hours, 95% CI: -29.4 to -16.2 versus -4.4 hours, 95% CI: -15.5 to 6.5 hours)


Early diagnosis of influenza requires:


- Patient seeks medical care early after symptom onset (Japanese model)
 - Clinic visit or phone consultation
- Influenza testing is performed vs. clinical diagnosis by Clinician
 - Assumes: influenza testing is accurate
 - Assumes clinical diagnosis is accurate
- Influenza testing at alternative sites (e.g. pharmacies)?
 - For non-high-risk patients

Future developments:

- Use of home-based influenza testing
 - Self-collected respiratory swabs (nasal swab)
 - Testing device for swab is connected to a smart phone
 - Positive result triggers message to clinician to prescribe antiviral treatment
 - High-risk patients or those with severe illness need to be examined by a clinician

Influenza Viral Shedding Peaks Within 24 Hours of Illness Onset

Lau J Infect Dis 2010; Ip Clin Infect Dis 2017

Rapid Influenza Molecular Assays Have High Sensitivity

Pooled Sensitivity to detect influenza A and B viruses versus RT-PCR

(N=162 studies) (Pooled Specificity >98%)

- Rapid antigen tests: 53-54%
- > Rapid antigen tests with analyzer device: 77-80% (digital immunoassays)
- ➤ Molecular assays: 92-95%

Meta-analysis of Rapid Influenza Molecular Assays (N=29 studies)

> Pooled Sensitivity: 87.9%

> Pooled Specificity: 97.4%

Annals of Internal Medicine

REVIEW

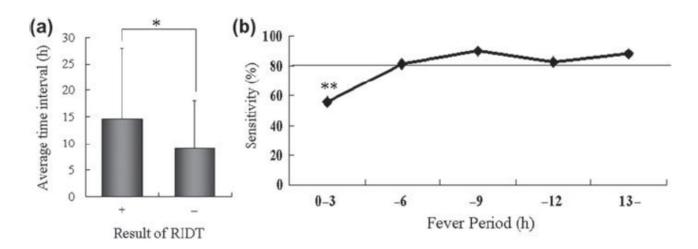
Diagnostic Accuracy of Novel and Traditional Rapid Tests for Influenza Infection Compared With Reverse Transcriptase Polymerase Chain Reaction

A Systematic Review and Meta-analysis

Joanna Merckx, MD, MSc; Rehab Wali, BSc, MBBS; Ian Schiller, MSc; Chelsea Caya, MScPH; Genevieve C. Gore, MLIS; Chartrand, MD, MSc; Nandini Dendukuri, PhD; and Jesse Papenburg, MD, MSc

Clinical Infectious Diseases

REVIEW ARTICLE

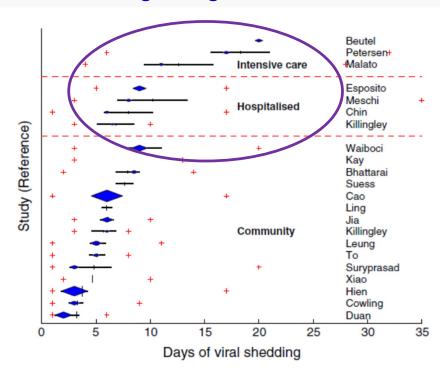


Rapid Molecular Tests for Influenza, Respiratory Syncytial Virus, and Other Respiratory Viruses: A Systematic Review of Diagnostic Accuracy and Clinical Impact Studies

- Patients present soon after illness onset (same day or next day)
- > Potential for early influenza diagnosis by rapid testing
 - > Potential for starting early antiviral treatment

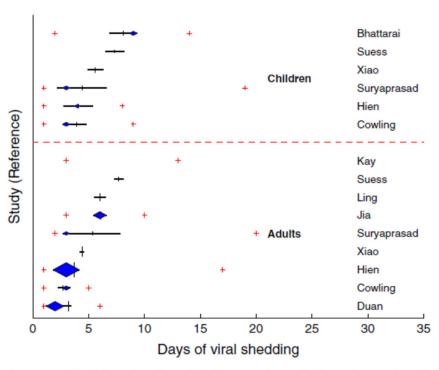
Sensitivity = 80%; Specificity = 97.1% of RIDTs to detect H1N1pdm09 virus versus RT-PCR

- > High RIDT sensitivity is due to early testing when viral levels are high
 - > However, sensitivity was lower when presenting very early after fever onset



Early antiviral treatment requires:

- A) Clinician prescribes antiviral medication
 - Educated about influenza and antiviral medications for influenza
 - Who to prioritize?
 - ➤ Target Group: **Persons at high-risk for complications** (young children, ≥65 years, pregnant women, persons with chronic medical conditions)
- B) Antiviral medication is widely available
 - Supply of antivirals is sufficient
 - Costs: Who pays for antivirals?
 - No financial barriers (government health insurance, private insurance, medication is affordable)
- C) Patient receives antiviral treatment
 - Patient has access to antivirals <u>and</u> starts treatment as soon as possible
- How to improve access to antivirals?
 - Make available at all outpatient clinics, emergency rooms?
 - Make available for over-the-counter use? Low cost (generic drugs)?


Influenza A(H1N1)pdm09 Viral Shedding Varies by Disease Severity

Viral Shedding is Longer with Severe Disease

Figure 1. Shedding duration of influenza A(H1N1)pdm09 by study and patient setting. (Legend: cross = minimum and maximum; middle of diamond = median; area of diamond = study size; vertical line = mean; horizontal line = 95% confidence interval)

Viral Shedding Duration is Similar in Children and Adults

Figure 2. Shedding duration of influenza A(H1N1)pdm09 in studies of community-based cases, by study and age group.

Fielding Influenza and Other Respiratory Viruses 2014

- Observational studies report highest clinical benefit when antiviral treatment is started as soon as possible in hospitalized influenza patients
 - Meta-analysis of neuraminidase inhibitor (NAI) treatment for influenza A(H1N1)pdm09 (most received oseltamivir, N = 29,234) reported survival benefit of early compared with later or no treatment
 - NAI treatment started on the day of admission was associated with a 19% overall reduction in duration of hospitalization (aIRR, 0.81 [95% CI, 0.78-0.85]; median decrease, 1.19 days [IQR, 0.85–1.55 days]), compared with no or later initiation of NAI treatment
 - One observational study (N = 699) reported that starting NAI treatment within 6 hours after hospital admission was associated with shorter duration of hospitalization versus starting antiviral treatment later (p<0.001)
- Infectious Diseases Society of America (IDSA) and CDC recommend:
 - Start oseltamivir treatment for hospitalized patients with suspected influenza as soon as possible without waiting for influenza testing results
 - How can this recommendation be implemented at hospitals?
 - > Protocols with checklists to start antiviral treatment in the Emergency Department

Other potential therapies (virus-targeted)

Convalescent plasma

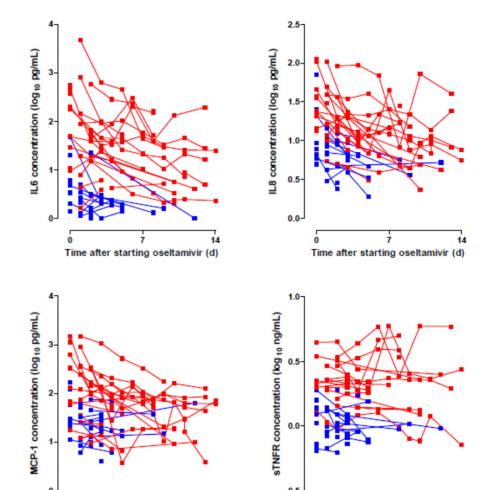
One case-control study in Hong Kong adults (n = 20) admitted to an intensive care unit within 7 days of influenza illness onset reported that convalescent plasma treatment (neutralizing Ab titer ≥160) had significantly lower mortality than non-treated controls (n=73) (20% vs. 54.8%, p<0.01), and significantly reduced respiratory tract influenza A(H1N1)pdm09 viral load and IL6, IL10, and TNFα levels (p<0.05)

Hyperimmune IVIG

One Phase III double blinded placebo-controlled RCT in hospitalized adults within 7 days of influenza illness onset reported a single dose of hyperimmune IVIG (n=156) did not show benefit at Day 7 compared to saline control (OR:1.25, 95% CI 0.79–1.97; p=0.33)

High-titer Immune Plasma

• One phase III double blinded placebo-controlled RCT in hospitalized children and adults within 6 days of influenza illness onset reported that high-titer plasma (HAI titer ≥1:80) **did not show clinical benefit at day 7** vs. low-titer plasma (HAI titer ≤1:10) controls (OR: 1.22, 95% CI: 0.65-2.29, p=0.54)


Immunotherapy with monoclonal antibodies (mAbs)

• No studies to date have shown significant clinical benefit of mAbs for treatment of outpatients versus placebo or for hospitalized patients + oseltamivir vs. oseltamivir alone

Proinflammatory Responses are Higher and Longer with Influenza Pneumonia Influenza Division

Time after starting oseltamivir (d)

Time after starting oseltamivir (d)

Lower respiratory tract disease

Upper respiratory tract illness

Lee Antiviral Therapy 2011; Lee CHEST 2010; Lee PLoS ONE 2021

Combination Anti-inflammatory and Antiviral Treatment

Azithromycin + Oseltamivir

One small open-label RCT in hospitalized adults in Hong Kong <5 days of influenza illness onset showed that azithromycin + oseltamivir (n=25) significantly reduced cytokines IL-6, CXCL8, IL-17, CXCL9 versus oseltamivir alone (n=25) [trend of reducing CRP]

Clarithromycin + Naproxen (Cox-1 inhibitor NSAID)+ Oseltamivir

• One phase IIb/III open-label RCT in hospitalized adults (mainly elderly) in Hong Kong ≤3 days of influenza illness onset reported that clarithromycin-naproxen-oseltamivir (n=107) was associated with lower 30-day mortality (0.9% vs. 8.2%) and shorter hospital stay (median 1 vs. 2 days), and was independently associated with lower 30-day mortality (OR, 0.06, 95% CI: 0.004-0.94, p=0.04) compared with oseltamivir alone (n=110)

Celecoxib (Cox-2 inhibitor NSAID) + Oseltamivir

One double blind RCT in hospitalized adults in Hong Kong with influenza A(H3N2) virus infection reported celecoxib-oseltamivir (n=60) had significantly lower 28-day mortality (p=0.037), lower IL-6 and IL-10 levels (p<0.05), and lower disease progression from day 1 to 3 (p<0.01) vs. oseltamivir (n=60).

Corticosteroids

- Observational studies suggest corticosteroids can prolong influenza virus replication or viral RNA detection
 - More common with high-dose corticosteroids
- Meta-analyses of observational studies
 - Suggest corticosteroids increase mortality and risk of secondary infections, in patients with influenza pneumonia or ARDS
 - But no differences when adjusted analyses were performed vs. no corticosteroids
 - Some observational studies suggest harm with high-dose, but not lower dose corticosteroids
 - One RCT of prednisone 50mg po x 7 days versus placebo for communityacquired pneumonia in Swiss adults reported no difference in clinical improvement (but very few influenza patients were enrolled: n=11 vs n = 13)
- ➤ No well-powered RCTs of corticosteroid treatment of influenza

- Community-acquired bacterial co-infections (e.g. pneumonia) are a well-known complication of influenza
 - Most common pathogens: Staphylococcus aureus (MRSA, MSSA), Streptococcus pneumoniae, Group A Streptococcus
 - ➤ Optimal antibiotic management is a gap, especially for critically ill patients
- Hospital-acquired co-infections are complications in critically ill influenza patients
 - Multi-antibiotic resistant bacterial infections, fungal infections
 - ➤ How to prevent or reduce risk?
- Nosocomial influenza virus transmission is always a challenge
 - Transmission from healthcare workers, visitors, other patients
 - ➤ How to prevent or reduce risk?

Co-infection with influenza A or B viruses and SARS-CoV-2 can occur

- Documented in case reports, case series
- Frequency, severity, and risk factors are unknown

Overlapping signs, symptoms, some differences with either infection

- Incubation period is shorter with influenza (1-3 days) than COVID-19 (2-14 days)
- Viral shedding, period of viral RNA detection is generally shorter for influenza
- Ageusia/dysgeusia, anosmia are more common with COVID-19 than influenza
- Diarrhea can occur in young children with influenza; at any age with COVID-19
- Timing of onset of complications/severe disease is earlier with influenza
- High-risk groups for influenza and COVID-19 are similar
 - Young children are at high-risk for influenza complications

Implications

- ➤ Testing is needed to distinguish influenza from COVID-19
 - **➤** Consider influenza virus infection, SARS-CoV-2 infection, co-infection

Treatment issues

- Approved antiviral medications for influenza have no effect on COVID-19
 - Oseltamivir, baloxavir have no in-vitro activity against SARS-CoV-2
 - No drug interactions with remdesivir
- Corticosteroids may prolong influenza viral replication in the upper and lower respiratory tracts (e.g. dexamethasone treatment of severe COVID-19)
 - Corticosteroids may increase risk of hospital-acquired infection
- Community-acquired bacterial co-infection appears more common with influenza than COVID-19 (MRSA, MSSA, pneumococcus, group A *Strept*)

▼ 🖺 🖒 | Search...

Information for Clinicians o... ×

1	🖍 Seasonal Influenza (Flu)	
	About Flu	+
	Who is at High Risk for Flu Complications	+
	This Flu Season	+
	Prevent Flu	+
	Flu Vaccines Work	+
	Symptoms & Diagnosis	+
	Treatment	+
	Schools, Businesses & Travelers	+
	Flu Activity & Surveillance	+
	Health Professionals	
•	Health Care Workers Need A Flu Vaccine	
	ACIP Recommendations	+
	Vaccination	+

https://www.cdc.gov/flu/professionals/diagnosis/index.htm

Information for Clinicians on Influenza Virus Testing

Español | Other Languages

Testing and treatment of influenza when SARS-CoV-2 and influenza viruses are cocirculating

- New Consolidated Clinical Algorithm for Outpatient Clinic or Emergency Department Patients with Acute Respiratory Illness Symptoms (With or Without Fever)
- New Clinical Algorithm for Outpatient Clinic or **Emergency Department Patients with Acute** Respiratory Illness Symptoms (With or Without Fever) Not Requiring Hospital Admission
- New Clinical Algorithm for Patients with Acute Respiratory Illness Symptoms Requiring Hospital Admission (With or Without Fever)

When to Test for Influenza

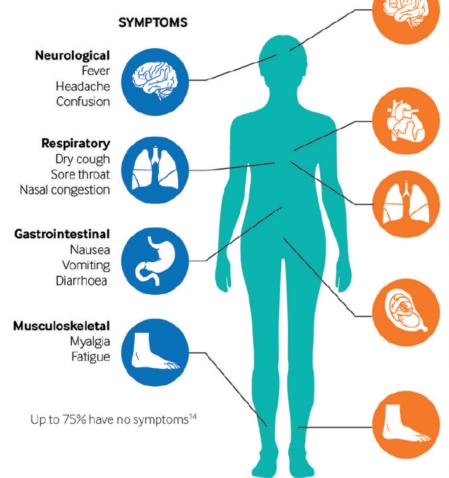
- · Guide for considering influenza testing when influenza viruses are circulating in the community
- Influenza virus testing in investigational outbreaks in institutional or other closed settings

What Influenza Virus Tests Are Available

- · Overview of influenza tests
- · Influenza Virus Testing Methods
- Table 1: Influenza Virus Testing Methods
- Table 2: FDA-cleared and Available Rapid Influenza Diagnostic Tests
- Table 3: FDA-cleared Nucleic Acid Detection Based Tests for Influenza Viruses
- Table 4. Multiplex Assays Authorized for Simultaneous Detection of Influenza Viruses and SARS-CoV-2
- Information on Rapid Molecular Assays, RT-PCR, and other Molecular Assays for Diagnosis of Influenza Virus Infection
- Information about Rapid Influenza Diagnostic Tests

Information for Laboratory Directors and Staff

• International Reagent Resource (IRR): The IRR


Conducting Clinical Trials of Interventions to Improve Clinical Management

- Although more has been learned about managing COVID-19 patients in 2020 than in many years of influenza clinical research, many key questions remain
- The biggest challenge is how will randomized clinical trials of new investigational therapeutics, immunomodulators, and other supportive care interventions (e.g. prone positioning, high-flow nasal oxygen, noninvasive ventilation) be implemented?
 - ➤ International platforms for collaborative adaptive clinical trials (e.g. REMAP CAP)
 - ➤ We need better antivirals, combination antiviral and antiinflammatory/immunomodulator therapy, RCTs of low-dose corticosteroids
 - > We need agreement on definitions of disease severity, and endpoints
- We need to start with standardizing clinical management of influenza

Thank you for your attention!

COMPLICATIONS

Neurological

Febrile convulsions*
Reyes syndrome*
Meningitis/encephalitis
Transverse myelitis
Guillain-Barré syndrome

Cardiac

Pericarditis Myocarditis Exacerbation of cardiovascular disease

Respiratory

Otitis media*
Croup*
Sinusitis/bronchitis/pharyngitis
Pneumonia (viral, or secondary bacterial)
Exacerbation of chronic lung disease

Pregnancy

Increased maternal complications
Increased infant perinatal mortality
Increased risk of prematurity
Smaller neonatal size
Lower birth weight

Musculoskeletal

Myositis Rhabdomyolysis

*More common in children

Uyeki NEJM 2009; Ghebrehewet BMJ 2016